Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes
نویسندگان
چکیده
Abstract. This paper provides a theoretical foundation for interior penalty discontinuous Galerkin methods for second order elliptic equations on very general polygonal or polyhedral meshes. The mesh can be composed of any polygons or polyhedra which satisfies certain shape regularity conditions characterized in a recent paper by two of the authors in [18]. The usual H conforming finite element methods on such meshes are either very complicated or impossible to implement in practical computation. The interior penalty discontinuous Galerkin method provides a simple and effective alternative approach which is efficient and robust. Results with such general meshes have important application in computational sciences.
منابع مشابه
Multigrid algorithms for hp-version Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes
In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with res...
متن کاملhp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
(2015) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. Mathematical Modelling and Numerical Analysis. ISSN 0764-583X (In Press) The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · To the extent reasonable and practicable the material made ava...
متن کاملhp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes
Abstract. We present a new hp-version space-time discontinuous Galerkin (dG) finite element method for the numerical approximation of parabolic evolution equations on general spatial meshes consisting of polygonal/polyhedral (polytopic) elements, giving rise to prismatic space-time elements. A key feature of the proposed method is the use of space-time elemental polynomial bases of total degree...
متن کاملhp-DGFEM for Second Order Elliptic Problems in Polyhedra II: Exponential Convergence
The goal of this paper is to establish exponential convergence of hp-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the conver...
متن کاملhp -Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation
We consider the symmetric formulation of the interior penalty discontinuous Galerkin finite element method for the numerical solution of the biharmonic equation with Dirichlet boundary conditions in a bounded polyhedral domain in R, d ≥ 2. For a shape-regular family of meshes ? Partially supported by CNPq Brazil ?? Grant from CNPq Brazil Correspondence to: Endre Süli 2 Igor Mozolevski et al. co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 255 شماره
صفحات -
تاریخ انتشار 2014